TwoSampleMR

library(data.table)
library(TwoSampleMR)

stderr:

TwoSampleMR version 0.5.6
[>] New: Option to use non-European LD reference panels for clumping etc
[>] Some studies temporarily quarantined to verify effect allele
[>] See news(package='TwoSampleMR') and https://gwas.mrcieu.ac.uk for further details
exp_raw <- fread("koges_bmi.txt.gz")

exp_raw <- subset(exp_raw,exp_raw$pval<5e-8)

exp_raw$phenotype <- "BMI"

exp_raw$n <- 72282

exp_dat <- format_data( exp_raw,
    type = "exposure",
    snp_col = "rsids",
    beta_col = "beta",
    se_col = "sebeta",
    effect_allele_col = "alt",
    other_allele_col = "ref",
    eaf_col = "af",
    pval_col = "pval",
    phenotype_col = "phenotype",
    samplesize_col= "n"
)
clumped_exp <- clump_data(exp_dat,clump_r2=0.01,pop="EAS")

stderr:

Warning message in .fun(piece, ...):
“Duplicated SNPs present in exposure data for phenotype 'BMI. Just keeping the first instance:

rs4665740

rs7201608

”
API: public: http://gwas-api.mrcieu.ac.uk/

Please look at vignettes for options on running this locally if you need to run many instances of this command.

Clumping rvi6Om, 2452 variants, using EAS population reference

Removing 2420 of 2452 variants due to LD with other variants or absence from LD reference panel
out_raw <- fread("hum0197.v3.BBJ.T2D.v1/GWASsummary_T2D_Japanese_SakaueKanai2020.auto.txt.gz",
                    select=c("SNPID","Allele1","Allele2","BETA","SE","p.value","N","AF_Allele2"))

out_raw$phenotype <- "T2D"

out_dat <- format_data( out_raw,
    type = "outcome",
    snp_col = "SNPID",
    beta_col = "BETA",
    se_col = "SE",
    effect_allele_col = "Allele2",
    other_allele_col = "Allele1",
    pval_col = "p.value",
    phenotype_col = "phenotype",
    samplesize_col= "n",
    eaf_col="AF_Allele2"
)

stderr:

Warning message in format_data(out_raw, type = "outcome", snp_col = "SNPID", beta_col = "BETA", :
“effect_allele column has some values that are not A/C/T/G or an indel comprising only these characters or D/I. These SNPs will be excluded.”
Warning message in format_data(out_raw, type = "outcome", snp_col = "SNPID", beta_col = "BETA", :
“The following SNP(s) are missing required information for the MR tests and will be excluded
1:1142714:t:<cn0>
1:4288465:t:<ins:me:alu>
1:4882232:t:<cn0>
1:5172414:g:<cn0>
1:5173809:t:<cn0>
1:5934301:g:<ins:me:alu>
1:6814818:a:<ins:me:alu>
1:7921468:c:<cn2>
1:8502010:t:<ins:me:alu>
1:8924066:c:<cn0>
1:9171841:c:<cn0>
1:9403667:a:<cn2>
1:9595360:a:<cn0>
1:9846036:c:<cn0>
1:10067190:g:<cn0>
1:10482499:g:<cn0>
1:11682873:t:<cn0>
1:11830220:t:<ins:me:sva>
1:11988599:c:<cn0>
1:12475666:t:<ins:me:sva>
1:12737575:a:<ins:me:alu>
1:12842004:a:<cn0>
1:14437074:t:<cn0>
1:14437868:a:<cn0>
1:14713511:t:<cn2>
1:14735732:g:<cn0>
1:15343948:g:<cn0>
1:16151682:c:<cn0>
1:16329336:t:<ins:me:sva>
1:16358741:g:<cn0>
1:17676165:a:<cn0>
1:19486410:c:<ins:me:alu>
1:19855608:a:<cn2>
1:20257109:t:<ins:me:alu>
1:20310746:g:<cn0>
1:20496899:c:<cn0>
1:20497183:c:<cn0>
1:20864015:t:<cn0>
1:20944751:c:<ins:me:alu>
1:21346279:a:<cn0>
1:21492591:c:<ins:me:alu>
1:21786418:t:<cn0>
1:22302473:t:<cn0>
1:22901908:t:<ins:me:alu>
1:23908383:g:<cn0>
1:24223580:g:<cn0>
1:24520350:g:<cn0>
1:24804603:c:<cn0>
1:25055152:g:<cn0>
1:26460095:a:<cn0>
1:26961278:g:<cn0>
1:29373390:t:<ins:me:alu>
1:31090520:t:<ins:me:alu>
1:31316259:t:<cn0>
1:31720009:a:<cn0>
1:32535965:g:<cn0>
1:32544371:a:<cn0>
1:33785116:c:<cn0>
1:35101427:c:<cn0>
1:35177287:g:<cn0>
1:35627104:t:<cn0>
1:36474694:t:<ins:me:alu>
1:36733282:t:<cn0>
1:37215810:a:<ins:me:alu>
1:37816478:a:<cn0>
1:38132306:t:<cn0>
1:39084231:a:<cn0>
1:39677675:t:<ins:me:alu>
1:40524704:t:<ins:me:alu>
1:40552356:a:<cn0>
1:40976681:g:<cn0>
1:41021684:a:<cn0>
1:41785500:a:<ins:me:line1>
1:42390318:c:<ins:me:alu>
1:43694061:t:<cn0>
1:44059290:a:<inv>
1:45021223:t:<cn0>
1:45708588:a:<cn0>
1:45822649:t:<cn0>
1:46333195:a:<ins:me:alu>
1:46794814:t:<ins:me:alu>
1:47267517:t:<cn0>
1:47346571:a:<cn0>
1:47623401:a:<cn0>
1:47913001:t:<cn0>
1:48820285:t:<ins:me:alu>
1:48972537:g:<ins:me:alu>
1:49357693:t:<ins:me:alu>
1:49428756:t:<ins:me:line1>
1:49861993:g:<ins:me:alu>
1:50912662:c:<ins:me:alu>
1:51102445:t:<cn0>
1:52146313:a:<cn0>
1:53594175:t:<cn0>
1:53595112:c:<cn0>
1:55092043:g:<cn0>
1:55341923:c:<cn0>
1:55342224:g:<cn0>
1:55927718:a:<cn0>
1:56268665:t:<ins:me:line1>
1:56405404:t:<ins:me:line1>
1:56879062:t:<ins:me:alu>
1:57100960:t:<ins:me:sva>
1:57208746:a:<cn0>
1:58722032:t:<cn2>
1:58743910:a:<cn0>
1:58795378:a:<cn0>
1:59205317:t:<ins:me:alu>
1:59591483:t:<ins:me:alu>
1:59871876:t:<ins:me:alu>
1:60046725:a:<cn0>
1:60048628:c:<cn0>
1:60470604:t:<ins:me:alu>
1:60487912:t:<cn0>
1:60715714:t:<ins:me:line1>
1:61144594:c:<ins:me:alu>
1:62082822:a:<cn0>
1:62113386:c:<cn0>
1:62479250:t:<cn0>
1:62622902:g:<cn0>
1:62654739:c:<cn0>
1:63841704:c:<ins:me:alu>
1:64720497:a:<cn0>
1:64850193:a:<ins:me:sva>
1:65346960:t:<ins:me:alu>
1:65412505:a:<cn0>
1:68375746:a:<cn0>
1:70061670:g:<ins:me:alu>
1:70091056:t:<ins:me:alu>
1:70093557:c:<ins:me:alu>
1:70412360:t:<ins:me:alu>
1:70424730:t:<cn2>
1:70820401:t:<cn0>
1:70912433:g:<ins:me:alu>
1:72449620:a:<cn0>
1:72755694:t:<cn0>
1:72766343:t:<cn0>
1:72778537:g:<cn0>
1:73092779:c:<cn2>
1:74312425:a:<cn0>
1:75148055:t:<ins:me:alu>
1:75192907:c:<ins:me:line1>
1:75301685:t:<ins:me:alu>
1:75557174:c:<ins:me:alu>
1:76392967:t:<ins:me:alu>
1:76416074:a:<ins:me:alu>
1:76900598:c:<cn0>
1:77577928:t:<ins:me:alu>
1:77634327:a:<ins:me:alu>
1:77764994:t:<ins:me:alu>
1:77830614:t:<cn0>
1:78446240:c:<ins:me:sva>
1:78607067:t:<ins:me:alu>
1:78649157:a:<cn0>
1:78800902:t:<ins:me:line1>
1:79108845:t:<ins:me:alu>
1:79331208:c:<ins:me:alu>
1:79582082:t:<ins:me:alu>
1:79855600:c:<cn0>
1:80221781:t:<cn0>
1:80299106:t:<ins:me:alu>
1:80504615:t:<cn0>
1:80554065:t:<cn0>
1:80955976:t:<ins:me:line1>
1:81422415:c:<cn0>
1:82312054:g:<ins:me:alu>
1:82850409:g:<ins:me:alu>
1:83041946:t:<cn0>
1:84056670:a:<cn0>
1:84388330:g:<cn0>
1:84517858:a:<cn0>
1:84712009:g:<cn0>
1:84913274:c:<ins:me:alu>
1:85293152:g:<ins:me:alu>
1:85620127:t:<ins:me:alu>
1:85910957:g:<cn0>
1:86400829:t:<cn0>
1:86696940:a:<ins:me:alu>
1:87064962:c:<cn2>
1:87096974:c:<cn0>
1:87096990:t:<cn0>
1:88813625:t:<ins:me:alu>
1:89209563:t:<ins:me:alu>
1:89733616:t:<ins:me:line1>
1:89811425:g:<cn0>
1:90370569:t:<ins:me:alu>
1:90914512:g:<ins:me:line1>
1:91878937:g:<cn0>
1:92131841:g:<inv>
1:92232051:t:<cn0>
1:93291972:c:<cn0>
1:93498232:t:<ins:me:alu>
1:94288372:c:<cn0>
1:95192010:a:<ins:me:line1>
1:95342701:g:<ins:me:alu>
1:95522242:t:<cn0>
1:97458273:t:<inv>
1:98605297:t:<ins:me:alu>
1:99610528:a:<ins:me:alu>
1:99698454:g:<ins:me:alu>
1:100355940:a:<ins:me:alu>
1:100645536:g:<ins:me:alu>
1:100994221:g:<ins:me:alu>
1:101693230:t:<cn0>
1:101695346:a:<cn0>
1:101770067:g:<ins:me:alu>
1:101978980:t:<ins:me:line1>
1:102568923:g:<ins:me:line1>
1:102920544:t:<ins:me:alu>
1:103054499:t:<ins:me:alu>
1:104359763:g:<cn0>
1:104443176:t:<cn0>
1:104574487:t:<ins:me:alu>
1:105054083:t:<ins:me:alu>
1:105070244:c:<ins:me:alu>
1:105138650:t:<ins:me:alu>
1:105231111:t:<ins:me:alu>
1:105832823:g:<cn0>
1:106015797:t:<cn0>
1:106978443:t:<cn0>
1:107896853:g:<cn0>
1:107949843:t:<ins:me:alu>
1:108142479:t:<ins:me:alu>
1:108369370:a:<cn0>
1:108402972:a:<cn0>
1:109366972:g:<cn0>
1:109573240:a:<cn0>
1:110187159:a:<cn0>
1:110225019:c:<cn0>
1:111013750:a:<cn0>
1:111472607:g:<cn0>
1:111802597:g:<ins:me:sva>
1:111827762:a:<cn0>
1:111896187:c:<ins:me:sva>
1:112032284:t:<ins:me:alu>
1:112123691:t:<ins:me:alu>
1:112691740:a:<cn0>
1:112736007:a:<ins:me:alu>
1:112992009:t:<ins:me:alu>
1:113799625:g:<cn0>
1:114925678:t:<cn0>
1:115178042:c:<cn0>
1:116229468:c:<cn0>
1:116983571:t:<ins:me:alu>
1:117593370:a:<cn0>
1:119526940:a:<cn0>
1:119553366:c:<ins:me:line1>
1:120012853:a:<cn0>
1:152555495:g:<cn0>
1:152643788:a:<cn0>
1:152760084:c:<cn0>
1:153133703:a:<cn0>
1:154123770:t:<ins:me:alu>
1:154324167:g:<cn0>
1:154865017:g:<ins:me:alu>
1:157173860:t:<cn0>
1:157363502:t:<ins:me:alu>
1:157540655:g:<cn0>
1:157887236:t:<inv>
1:158371473:a:<ins:me:alu>
1:158488410:a:<cn0>
1:158726918:a:<cn0>
1:160979498:c:<cn0>
1:162263027:t:<ins:me:alu>
1:163088865:t:<ins:me:alu>
1:163314443:g:<ins:me:alu>
1:163639693:t:<ins:me:alu>
1:165553149:t:<ins:me:line1>
1:165861400:t:<ins:me:sva>
1:166189445:t:<ins:me:alu>
1:167506110:g:<ins:me:alu>
1:167712862:g:<ins:me:alu>
1:168926083:a:<ins:me:sva>
1:169004356:c:<cn0>
1:169042039:c:<cn0>
1:169225213:t:<cn0>
1:169524859:t:<ins:me:line1>
1:170603451:a:<ins:me:alu>
1:170991168:c:<ins:me:alu>
1:171358314:t:<ins:me:alu>
1:172177959:g:<cn0>
1:172825753:g:<cn0>
1:173811663:a:<cn0>
1:174654509:g:<cn0>
1:174796517:t:<cn0>
1:174894014:g:<cn0>
1:175152408:g:<cn0>
1:177509016:g:<cn0>
1:177544393:g:<cn0>
1:177946159:a:<cn0>
1:178397612:t:<ins:me:alu>
1:178495321:a:<cn0>
1:178692798:t:<ins:me:alu>
1:179491966:t:<ins:me:alu>
1:179607260:a:<cn0>
1:180272299:a:<cn0>
1:180857564:c:<ins:me:alu>
1:181043348:a:<cn0>
1:181588360:t:<ins:me:alu>
1:181601286:t:<ins:me:alu>
1:181853551:g:<ins:me:alu>
1:182420857:t:<ins:me:alu>
1:183308627:a:<cn0>
1:185009806:t:<cn0>
1:185504717:c:<ins:me:alu>
1:185584799:t:<ins:me:alu>
1:185857064:a:<cn0>
1:187464747:t:<cn0>
1:187522081:g:<ins:me:alu>
1:187609013:t:<cn0>
1:187716053:g:<cn0>
1:187932575:t:<cn0>
1:187955397:c:<ins:me:alu>
1:188174657:t:<ins:me:alu>
1:188186464:t:<ins:me:alu>
1:188438213:t:<ins:me:alu>
1:188615934:g:<ins:me:alu>
1:189247039:a:<ins:me:alu>
1:190052658:t:<cn0>
1:190309695:t:<cn0>
1:190773296:t:<ins:me:alu>
1:190874469:t:<ins:me:alu>
1:191466954:t:<ins:me:line1>
1:191580781:a:<ins:me:alu>
1:191817437:c:<ins:me:alu>
1:191916438:t:<cn0>
1:192008678:t:<ins:me:line1>
1:192262268:a:<ins:me:line1>
1:193549655:c:<ins:me:line1>
1:193675125:t:<ins:me:alu>
1:193999047:t:<cn0>
1:194067859:t:<ins:me:alu>
1:194575585:t:<cn0>
1:194675140:c:<ins:me:alu>
1:195146820:c:<ins:me:alu>
1:195746415:a:<ins:me:line1>
1:195885406:g:<cn0>
1:195904499:g:<cn0>
1:196464453:a:<ins:me:line1>
1:196602664:a:<cn0>
1:196728877:g:<cn0>
1:196734744:a:<cn0>
1:196761370:t:<ins:me:alu>
1:197756784:c:<inv>
1:197894025:c:<cn0>
1:198093872:c:<ins:me:alu>
1:198243300:t:<ins:me:alu>
1:198529696:t:<ins:me:line1>
1:198757296:t:<cn0>
1:198773749:t:<cn0>
1:198815313:a:<ins:me:alu>
1:202961159:t:<ins:me:alu>
1:203684252:t:<cn0>
1:204238474:c:<ins:me:alu>
1:204345055:t:<ins:me:alu>
1:204381864:c:<cn0>
1:205178526:t:<inv>”
harmonized_data <- harmonise_data(clumped_exp,out_dat,action=1)

stderr:

Harmonising BMI (rvi6Om) and T2D (ETcv15)
harmonized_data
SNP effect_allele.exposure other_allele.exposure effect_allele.outcome other_allele.outcome beta.exposure beta.outcome eaf.exposure eaf.outcome remove pval.exposure se.exposure samplesize.exposure exposure mr_keep.exposure pval_origin.exposure id.exposure action mr_keep samplesize.outcome
rs10198356 G A G A 0.044 0.027821816 0.450 0.46949841 FALSE 1.5e-17 0.0051 72282 BMI TRUE reported rvi6Om 1 TRUE NA
rs10209994 C A C A 0.030 0.028433424 0.640 0.65770918 FALSE 2.0e-08 0.0054 72282 BMI TRUE reported rvi6Om 1 TRUE NA
rs10824329 A G A G 0.029 0.018217119 0.510 0.56240335 FALSE 1.7e-08 0.0051 72282 BMI TRUE reported rvi6Om 1 TRUE NA
rs10938397 G A G A 0.036 0.044554736 0.280 0.29915686 FALSE 1.0e-10 0.0056 72282 BMI TRUE reported rvi6Om 1 TRUE NA
rs11066132 T C T C -0.053 -0.031928806 0.160 0.24197159 FALSE 1.0e-13 0.0071 72282 BMI TRUE reported rvi6Om 1 TRUE NA
rs12522139 G T G T -0.037 -0.010749243 0.270 0.24543922 FALSE 1.8e-10 0.0057 72282 BMI TRUE reported rvi6Om 1 TRUE NA
rs12591730 A G A G 0.037 0.033042812 0.220 0.25367536 FALSE 1.5e-08 0.0065 72282 BMI TRUE reported rvi6Om 1 TRUE NA
rs13013021 T C T C 0.070 0.104075223 0.907 0.90195307 FALSE 1.9e-15 0.0088 72282 BMI TRUE reported rvi6Om 1 TRUE NA
rs1955337 T G T G 0.036 0.019593503 0.300 0.24112816 FALSE 7.4e-11 0.0056 72282 BMI TRUE reported rvi6Om 1 TRUE NA
rs2076308 C G C G 0.037 0.041352038 0.310 0.31562874 FALSE 3.4e-11 0.0055 72282 BMI TRUE reported rvi6Om 1 TRUE NA
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
rs476828 C T C T 0.067 0.078651859 0.270 0.25309742 FALSE 2.8e-31 0.0057 72282 BMI TRUE reported rvi6Om 1 TRUE NA
rs4883723 A G A G 0.039 0.021370910 0.280 0.22189601 FALSE 8.3e-12 0.0057 72282 BMI TRUE reported rvi6Om 1 TRUE NA
rs509325 G T G T 0.065 0.035691759 0.280 0.26816326 FALSE 7.8e-31 0.0057 72282 BMI TRUE reported rvi6Om 1 TRUE NA
rs55872725 T C T C 0.090 0.121517023 0.120 0.20355108 FALSE 1.8e-31 0.0077 72282 BMI TRUE reported rvi6Om 1 TRUE NA
rs6089309 C T C T -0.033 -0.018669833 0.700 0.65803267 FALSE 3.5e-09 0.0056 72282 BMI TRUE reported rvi6Om 1 TRUE NA
rs6265 T C T C -0.049 -0.031642696 0.460 0.40541994 FALSE 6.1e-22 0.0051 72282 BMI TRUE reported rvi6Om 1 TRUE NA
rs6736712 G C G C -0.053 -0.029716899 0.917 0.93023505 FALSE 2.1e-08 0.0095 72282 BMI TRUE reported rvi6Om 1 TRUE NA
rs7560832 C A C A -0.150 -0.090481195 0.012 0.01129784 FALSE 2.0e-09 0.0250 72282 BMI TRUE reported rvi6Om 1 TRUE NA
rs825486 T C T C -0.031 0.019073554 0.690 0.75485104 FALSE 3.1e-08 0.0056 72282 BMI TRUE reported rvi6Om 1 TRUE NA
rs9348441 A T A T -0.036 0.179230794 0.470 0.42502848 FALSE 1.3e-12 0.0051 72282 BMI TRUE reported rvi6Om 1 TRUE NA
res <- mr(harmonized_data)

stderr:

Analysing 'rvi6Om' on 'hff6sO'
res
id.exposure id.outcome outcome exposure method nsnp b se pval
rvi6Om hff6sO T2D BMI MR Egger 28 1.3337580 0.69485260 6.596064e-02
rvi6Om hff6sO T2D BMI Weighted median 28 0.6298980 0.08516315 1.399605e-13
rvi6Om hff6sO T2D BMI Inverse variance weighted 28 0.5598956 0.23225806 1.592361e-02
rvi6Om hff6sO T2D BMI Simple mode 28 0.6097842 0.13305429 9.340189e-05
rvi6Om hff6sO T2D BMI Weighted mode 28 0.5946778 0.12680355 7.011481e-05
mr_heterogeneity(harmonized_data)
id.exposure id.outcome outcome exposure method Q Q_df Q_pval
rvi6Om hff6sO T2D BMI MR Egger 670.7022 26 1.000684e-124
rvi6Om hff6sO T2D BMI Inverse variance weighted 706.6579 27 1.534239e-131
mr_pleiotropy_test(harmonized_data)
id.exposure id.outcome outcome exposure egger_intercept se pval
rvi6Om hff6sO T2D BMI -0.03603697 0.0305241 0.2484472
res_single <- mr_singlesnp(harmonized_data)
res_single
exposure outcome id.exposure id.outcome samplesize SNP b se p
BMI T2D rvi6Om hff6sO NA rs10198356 0.6323140 0.2082837 2.398742e-03
BMI T2D rvi6Om hff6sO NA rs10209994 0.9477808 0.3225814 3.302164e-03
BMI T2D rvi6Om hff6sO NA rs10824329 0.6281765 0.3246214 5.297739e-02
BMI T2D rvi6Om hff6sO NA rs10938397 1.2376316 0.2775854 8.251150e-06
BMI T2D rvi6Om hff6sO NA rs11066132 0.6024303 0.2232401 6.963693e-03
BMI T2D rvi6Om hff6sO NA rs12522139 0.2905201 0.2890240 3.148119e-01
BMI T2D rvi6Om hff6sO NA rs12591730 0.8930490 0.3076687 3.700413e-03
BMI T2D rvi6Om hff6sO NA rs13013021 1.4867889 0.2207777 1.646925e-11
BMI T2D rvi6Om hff6sO NA rs1955337 0.5442640 0.2994146 6.910079e-02
BMI T2D rvi6Om hff6sO NA rs2076308 1.1176226 0.2657969 2.613132e-05
... ... ... ... ... ... ... ... ...
BMI T2D rvi6Om hff6sO NA rs509325 0.5491040 0.1598196 5.908641e-04
BMI T2D rvi6Om hff6sO NA rs55872725 1.3501891 0.1259791 8.419325e-27
BMI T2D rvi6Om hff6sO NA rs6089309 0.5657525 0.3347009 9.096620e-02
BMI T2D rvi6Om hff6sO NA rs6265 0.6457693 0.1901871 6.851804e-04
BMI T2D rvi6Om hff6sO NA rs6736712 0.5606962 0.3448784 1.039966e-01
BMI T2D rvi6Om hff6sO NA rs7560832 0.6032080 0.2904972 3.785077e-02
BMI T2D rvi6Om hff6sO NA rs825486 -0.6152759 0.3500334 7.878772e-02
BMI T2D rvi6Om hff6sO NA rs9348441 -4.9786332 0.2572782 1.992909e-83
BMI T2D rvi6Om hff6sO NA All - Inverse variance weighted 0.5598956 0.2322581 1.592361e-02
BMI T2D rvi6Om hff6sO NA All - MR Egger 1.3337580 0.6948526 6.596064e-02
res_loo <- mr_leaveoneout(harmonized_data)
res_loo
exposure outcome id.exposure id.outcome samplesize SNP b se p
BMI T2D rvi6Om hff6sO NA rs10198356 0.5562834 0.2424917 2.178871e-02
BMI T2D rvi6Om hff6sO NA rs10209994 0.5520576 0.2388122 2.079526e-02
BMI T2D rvi6Om hff6sO NA rs10824329 0.5585335 0.2390239 1.945341e-02
BMI T2D rvi6Om hff6sO NA rs10938397 0.5412688 0.2388709 2.345460e-02
BMI T2D rvi6Om hff6sO NA rs11066132 0.5580606 0.2417275 2.096381e-02
BMI T2D rvi6Om hff6sO NA rs12522139 0.5667102 0.2395064 1.797373e-02
BMI T2D rvi6Om hff6sO NA rs12591730 0.5524802 0.2390990 2.085075e-02
BMI T2D rvi6Om hff6sO NA rs13013021 0.5189715 0.2386808 2.968017e-02
BMI T2D rvi6Om hff6sO NA rs1955337 0.5602635 0.2394505 1.929468e-02
BMI T2D rvi6Om hff6sO NA rs2076308 0.5431355 0.2394403 2.330758e-02
... ... ... ... ... ... ... ... ...
BMI T2D rvi6Om hff6sO NA rs4883723 0.5602050 0.2397325 1.945000e-02
BMI T2D rvi6Om hff6sO NA rs509325 0.5608429 0.2468506 2.308693e-02
BMI T2D rvi6Om hff6sO NA rs55872725 0.4419446 0.2454771 7.180543e-02
BMI T2D rvi6Om hff6sO NA rs6089309 0.5597859 0.2388902 1.911519e-02
BMI T2D rvi6Om hff6sO NA rs6265 0.5547068 0.2436910 2.282978e-02
BMI T2D rvi6Om hff6sO NA rs6736712 0.5598815 0.2387602 1.902944e-02
BMI T2D rvi6Om hff6sO NA rs7560832 0.5588113 0.2396229 1.969836e-02
BMI T2D rvi6Om hff6sO NA rs825486 0.5800026 0.2367545 1.429330e-02
BMI T2D rvi6Om hff6sO NA rs9348441 0.7378967 0.1366838 6.717515e-08
BMI T2D rvi6Om hff6sO NA All 0.5598956 0.2322581 1.592361e-02
harmonized_data$"r.outcome" <- get_r_from_lor(
  harmonized_data$"beta.outcome",
  harmonized_data$"eaf.outcome",
  45383,
  132032,
  0.26,
  model = "logit",
  correction = FALSE
)
out <- directionality_test(harmonized_data)
out

stderr:

r.exposure and/or r.outcome not present.

Calculating approximate SNP-exposure and/or SNP-outcome correlations, assuming all are quantitative traits. Please pre-calculate r.exposure and/or r.outcome using get_r_from_lor() for any binary traits
id.exposure id.outcome exposure outcome snp_r2.exposure snp_r2.outcome correct_causal_direction steiger_pval
rvi6Om ETcv15 BMI T2D 0.02125453 0.005496427 TRUE NA
res <- mr(harmonized_data)
p1 <- mr_scatter_plot(res, harmonized_data)
p1[[1]]
res_single <- mr_singlesnp(harmonized_data)
p2 <- mr_forest_plot(res_single)
p2[[1]]
res_loo <- mr_leaveoneout(harmonized_data)
p3 <- mr_leaveoneout_plot(res_loo)
p3[[1]]
res_single <- mr_singlesnp(harmonized_data)
p4 <- mr_funnel_plot(res_single)
p4[[1]]