Skip to content

TWAS

Background

Most variants identified in GWAS are located in regulatory regions, and these genetic variants could potentially affect complex traits through gene expression.

However, due to the limitation of samples and high cost, it is difficult to measure gene expression at a large scale. Consequently, many expression-trait associations have not been detected, especially for those with small effect sizes.

To address these issues, alternative approaches have been proposed and transcriptome-wide association study (TWAS) has become a common and easy-to-perform approach to identify genes whose expression is significantly associated with complex traits in individuals without directly measured expression levels.

GWAS and TWAS

image

Definition

TWAS is a method to identify significant expression-trait associations using expression imputation from genetic data or summary statistics.

  • Individual-level TWAS: uses individual-level genotype and phenotype for expression prediction and association test (e.g. PrediXcan)
  • Summary-level TWAS: uses only GWAS summary statistics for expression prediction and association test (e.g. FUSION, S-PrediXcan)

Individual-level and summary-level TWAS

image

FUSION

In this tutorial, we will introduce FUSION, which is one of the most commonly used tools for performing transcriptome-wide association studies (TWAS) using summary-level data.

url : http://gusevlab.org/projects/fusion/

FUSION trains predictive models of the genetic component of a functional/molecular phenotype and predicts and tests that component for association with disease using GWAS summary statistics. The goal is to identify associations between a GWAS phenotype and a functional phenotype that was only measured in reference data. (http://gusevlab.org/projects/fusion/)

Quote

Gusev, A., Ko, A., Shi, H., Bhatia, G., Chung, W., Penninx, B. W., ... & Pasaniuc, B. (2016). Integrative approaches for large-scale transcriptome-wide association studies. Nature genetics, 48(3), 245-252.

Algorithm for imputing expression into GWAS summary statistics

ImpG-Summary algorithm was extended to impute the Z scores for the cis genetic component of expression.

FUSION statistical model

\(Z\) : a vector of standardized effect sizes (z scores) of SNPs for the target trait at a given locus

We impute the Z score of the expression and trait as a linear combination of elements of \(Z\) with weights \(W\).

\[ W = \Sigma_{e,s}\Sigma_{s,s}^{-1} \]
  • \(\Sigma_{e,s}\) : covariance matrix between all SNPs and gene expression

  • \(\Sigma_{s,s}\) : covariance among all SNPs (LD)

Both \(\Sigma_{e,s}\) and \(\Sigma_{s,s}\) are estimated from reference datsets.

\[ Z \sim N(0, \Sigma_{s,s} ) \]

The variance of \(WZ\) (imputed z score of expression and trait)

\[ Var(WZ) = W\Sigma_{s,s}W^t \]

The imputation Z score can be obtained by:

\[ {{WZ}\over{W\Sigma_{s,s}W^t}^{1/2}} \]

ImpG-Summary algorithm

Pasaniuc, B., Zaitlen, N., Shi, H., Bhatia, G., Gusev, A., Pickrell, J., ... & Price, A. L. (2014). Fast and accurate imputation of summary statistics enhances evidence of functional enrichment. Bioinformatics, 30(20), 2906-2914.

Installation

Download FUSION from github and install

wget https://github.com/gusevlab/fusion_twas/archive/master.zip
unzip master.zip
cd fusion_twas-master

Download and unzip the LD reference data (1000 genome)

wget https://data.broadinstitute.org/alkesgroup/FUSION/LDREF.tar.bz2
tar xjvf LDREF.tar.bz2

Download and unzip plink2R

wget https://github.com/gabraham/plink2R/archive/master.zip
unzip master.zip

Install R packages

# R >= 4.0
R

install.packages(c('optparse','RColorBrewer'))
install.packages('plink2R-master/plink2R/',repos=NULL)

Example

FUSION framework

image

Input:

  1. GWAS summary statistics (in LDSC format)
  2. pre-computed gene expression weights (from http://gusevlab.org/projects/fusion/)

Input GWAS sumstats fromat

  1. SNP (rsID)
  2. A1 (effect allele)
  3. A2 (non-effect allele)
  4. Z (Z score)

Example:

SNP A1  A2  N   CHISQ   Z
rs6671356   C   T   70100.0 0.172612905312  0.415467092935
rs6604968   G   A   70100.0 0.291125788806  0.539560736902
rs4970405   A   G   70100.0 0.102204513891  0.319694407037
rs12726255  G   A   70100.0 0.312418295691  0.558943911042
rs4970409   G   A   70100.0 0.0524226849517 0.228960007319

Get sample sumstats and weights

wget https://data.broadinstitute.org/alkesgroup/FUSION/SUM/PGC2.SCZ.sumstats

mkdir WEIGHTS
cd WEIGHTS
wget https://data.broadinstitute.org/alkesgroup/FUSION/WGT/GTEx.Whole_Blood.tar.bz2
tar xjf GTEx.Whole_Blood.tar.bz2

WEIGHTS

files in each WEIGHTS folder

RDat weight files for each gene in a tissue type

GTEx.Whole_Blood.ENSG00000002549.8.LAP3.wgt.RDat         GTEx.Whole_Blood.ENSG00000166394.10.CYB5R2.wgt.RDat
GTEx.Whole_Blood.ENSG00000002822.11.MAD1L1.wgt.RDat      GTEx.Whole_Blood.ENSG00000166435.11.XRRA1.wgt.RDat
GTEx.Whole_Blood.ENSG00000002919.10.SNX11.wgt.RDat       GTEx.Whole_Blood.ENSG00000166436.11.TRIM66.wgt.RDat
GTEx.Whole_Blood.ENSG00000002933.3.TMEM176A.wgt.RDat     GTEx.Whole_Blood.ENSG00000166444.13.ST5.wgt.RDat
GTEx.Whole_Blood.ENSG00000003137.4.CYP26B1.wgt.RDat      GTEx.Whole_Blood.ENSG00000166471.6.TMEM41B.wgt.RDat
...

Expression imputation

Rscript FUSION.assoc_test.R \
--sumstats PGC2.SCZ.sumstats \
--weights ./WEIGHTS/GTEx.Whole_Blood.pos \
--weights_dir ./WEIGHTS/ \
--ref_ld_chr ./LDREF/1000G.EUR. \
--chr 22 \
--out PGC2.SCZ.22.dat

Results

head PGC2.SCZ.22.dat
PANEL   FILE    ID  CHR P0  P1  HSQ BEST.GWAS.ID    BEST.GWAS.Z EQTL.ID EQTL.R2 EQTL.Z  EQTL.GWAS.Z NSNP    NWGT    MODEL   MODELCV.R2  MODELCV.PV  TWAS.Z  TWAS.P
NA  ../WEIGHTS//GTEx.Whole_Blood/GTEx.Whole_Blood.ENSG00000273311.1.DGCR11.wgt.RDat DGCR11  22  19033675    19035888    0.0551  rs2238767   -2.98   rs2283641    0.013728     4.33   2.5818 408  1  top1    0.014   0.018    2.5818 9.83e-03
NA  ../WEIGHTS//GTEx.Whole_Blood/GTEx.Whole_Blood.ENSG00000100075.5.SLC25A1.wgt.RDat    SLC25A1 22  19163095    19166343    0.0740  rs2238767   -2.98   rs762523     0.080367     5.36  -1.8211 406  1  top1    0.08    7.2e-08 -1.8216.86e-02
NA  ../WEIGHTS//GTEx.Whole_Blood/GTEx.Whole_Blood.ENSG00000070371.11.CLTCL1.wgt.RDat    CLTCL1  22  19166986    19279239    0.1620  rs4819843    3.04   rs809901     0.072193     5.53  -1.9928 456 19  enet    0.085   2.8e-08 -1.8806.00e-02
NA  ../WEIGHTS//GTEx.Whole_Blood/GTEx.Whole_Blood.ENSG00000232926.1.AC000078.5.wgt.RDat AC000078.5  22  19874812    19875493    0.2226  rs5748555   -3.15   rs13057784   0.052796     5.60  -0.1652 514 44  enet    0.099   2e-09  0.0524   9.58e-01
NA  ../WEIGHTS//GTEx.Whole_Blood/GTEx.Whole_Blood.ENSG00000185252.13.ZNF74.wgt.RDat ZNF74   22  20748405    20762745    0.1120  rs595272     4.09   rs1005640    0.001422     3.44  -1.3677 301  8  enet    0.008   0.054   -0.8550 3.93e-01
NA  ../WEIGHTS//GTEx.Whole_Blood/GTEx.Whole_Blood.ENSG00000099940.7.SNAP29.wgt.RDat SNAP29  22  21213771    21245506    0.1286  rs595272     4.09   rs4820575    0.061763     5.94  -1.1978 416 27  enet    0.079   9.4e-08 -1.0354 3.00e-01
NA  ../WEIGHTS//GTEx.Whole_Blood/GTEx.Whole_Blood.ENSG00000272600.1.AC007308.7.wgt.RDat AC007308.7  22  21243494    21245502    0.2076  rs595272     4.09   rs165783     0.100625     6.79  -0.8871 408 12  lasso   0.16    5.4e-1-1.2049   2.28e-01
NA  ../WEIGHTS//GTEx.Whole_Blood/GTEx.Whole_Blood.ENSG00000183773.11.AIFM3.wgt.RDat AIFM3   22  21319396    21335649    0.0676  rs595272     4.09   rs565979     0.036672     4.50  -0.4474 362  1  top1    0.037   0.00024 -0.4474 6.55e-01
NA  ../WEIGHTS//GTEx.Whole_Blood/GTEx.Whole_Blood.ENSG00000230513.1.THAP7-AS1.wgt.RDat  THAP7-AS1   22  21356175    21357118    0.2382  rs595272     4.09   rs2239961    0.105307    -7.04  -0.3783 347  5  lasso   0.15    7.6e-1 0.2292   8.19e-01

Descriptions of the output (cited from http://gusevlab.org/projects/fusion/ )

Colume number Column header Value Usage
1 FILE … Full path to the reference weight file used
2 ID FAM109B Feature/gene identifier, taken from --weights file
3 CHR 22 Chromosome
4 P0 42470255 Gene start (from --weights)
5 P1 42475445 Gene end (from --weights)
6 HSQ 0.0447 Heritability of the gene
7 BEST.GWAS.ID rs1023500 rsID of the most significant GWAS SNP in locus
8 BEST.GWAS.Z -5.94 Z-score of the most significant GWAS SNP in locus
9 EQTL.ID rs5758566 rsID of the best eQTL in the locus
10 EQTL.R2 0.058680 cross-validation R2 of the best eQTL in the locus
11 EQTL.Z -5.16 Z-score of the best eQTL in the locus
12 EQTL.GWAS.Z -5.0835 GWAS Z-score for this eQTL
13 NSNP 327 Number of SNPs in the locus
14 MODEL lasso Best performing model
15 MODELCV.R2 0.058870 cross-validation R2 of the best performing model
16 MODELCV.PV 3.94e-06 cross-validation P-value of the best performing model
17 TWAS.Z 5.1100 TWAS Z-score (our primary statistic of interest)
18 TWAS.P 3.22e-07 TWAS P-value

Limitations

  1. Significant loci identified in TWAS also contain multiple tarit-associated genes. GWAS often identifies multiple variants in LD. Similarly, TWAS frequently identifies multiple genes in a locus.

  2. Co-regulation may cause false positive results. Just like SNPs are correlated due to LD, gene expressions are often correlated due to co-regulation.

  3. Sometimes even when co-regulation is not captured, the shared variants (or variants in strong LD) in different expression prediction models may cause false positive results.

  4. Predicted expression account for only a limited portion of total gene expression. Total expression is affected not only by genetic components like cis-eQTL but also by other factors like environmental and technical components.

  5. Other factors. For example, the window size for selecting variants may affect association results.

Criticism

TWAS aims to test the relationship of the phenotype with the genetic component of the gene expression. But under current framework, TWAS only test the relationship of the phenotype with the predicted gene expression without accounting for the uncertainty in that prediction. The key point here is that the current framework omits the fact that the gene expression data is also the result of a sampling process from the analysis.

"Consequently, the test of association between that predicted genetic component and a phenotype reduces to merely a (weighted) test of joint association of the SNPs with the phenotype, which means that they cannot be used to infer a genetic relationship between gene expression and the phenotype on a population level."

Quote

de Leeuw, C., Werme, J., Savage, J. E., Peyrot, W. J., & Posthuma, D. (2021). On the interpretation of transcriptome-wide association studies. bioRxiv, 2021-08.

Reference

  • (FUSION) Gusev, A., Ko, A., Shi, H., Bhatia, G., Chung, W., Penninx, B. W., ... & Pasaniuc, B. (2016). Integrative approaches for large-scale transcriptome-wide association studies. Nature genetics, 48(3), 245-252.
  • (review of TWAS) Wainberg, M., Sinnott-Armstrong, N., Mancuso, N., Barbeira, A. N., Knowles, D. A., Golan, D., ... & Kundaje, A. (2019). Opportunities and challenges for transcriptome-wide association studies. Nature genetics, 51(4), 592-599.
  • (PrediXcan) Gamazon, E. R., Wheeler, H. E., Shah, K. P., Mozaffari, S. V., Aquino-Michaels, K., Carroll, R. J., ... & Im, H. K. (2015). A gene-based association method for mapping traits using reference transcriptome data. Nature genetics, 47(9), 1091-1098.
  • (S-PrediXcan) Barbeira, A. N., Dickinson, S. P., Bonazzola, R., Zheng, J., Wheeler, H. E., Torres, J. M., ... & Genome Browser Data Integration & Visualization—EBI Flicek Paul 108 Juettemann Thomas 108 Ruffier Magali 108 Sheppard Dan 108 Taylor Kieron 108 Trevanion Stephen J. 108 Zerbino Daniel R. 108. (2018). Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nature communications, 9(1), 1825.
  • (Criticism of current TWAS framework) de Leeuw, C., Werme, J., Savage, J. E., Peyrot, W. J., & Posthuma, D. (2021). On the interpretation of transcriptome-wide association studies. bioRxiv, 2021-08