Skip to content

Principle component analysis (PCA)

PCA aims to find the orthogonal directions of maximum variance and project the data onto a new subspace with equal or fewer dimensions than the original one.

Steps of PCA

image

A simple illustration of PCA

Source data:

cov = np.array([[6, -3], [-3, 3.5]])
pts = np.random.multivariate_normal([0, 0], cov, size=800)

The red arrow shows the first principal component axis (PC1) and the blue arrow shows the second principal component axis (PC2). The two axes are orthogonal.

image

Interpretation of PCs

The first principal component of a set of p variables, presumed to be jointly normally distributed, is the derived variable formed as a linear combination of the original variables that explains the most variance. The second principal component explains the most variance in what is left once the effect of the first component is removed, and we may proceed through p iterations until all the variance is explained.

Genotype PCA

Genotype PCs are often included in the association tests to correct for population stratification. Here, usually, the data we use is the genotype matrix from the SNP array, and the covariance matrix used in PCA calculation is called genetic relationship matrix (GRM). GRM is first estimated using independent common SNPs and then PCA calculation is applied to this matrix to generate eigenvectors and eigenvalues. Finally, the top \(k\) eigenvectors with the largest eigenvalues are used to project the original genotypes into a new feature subspace, which has much fewer dimensions than the original one (dimension reduction).

Genetic relationship matrix (GRM)

image

Citation: Yang, J., Lee, S. H., Goddard, M. E., & Visscher, P. M. (2011). GCTA: a tool for genome-wide complex trait analysis. The American Journal of Human Genetics, 88(1), 76-82.

PCA is by far the most commonly used dimension reduction approach used in population genetics which could identify the difference in ancestry among the sample individuals. The population outliers should be excluded from the samples used in GWAS to avoid bias caused by population stratification. For GWAS, we also need to include top PCs to adjust for the population stratification.

Please read the following paper on how we apply PCA to genetic data: Price, A., Patterson, N., Plenge, R. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38, 904–909 (2006). https://doi.org/10.1038/ng1847 https://www.nature.com/articles/ng1847

So before association analysis, we will learn how to run PCA analysis first.

Genotype PCA workflow

image

Preparation

Exclude SNPs in high-LD or HLA regions

For PCA, we first exclude SNPs in high-LD or HLA regions from the genotype data.

The reason why we want to exclude such high-LD or HLA regions

  • Price, A. L., Weale, M. E., Patterson, N., Myers, S. R., Need, A. C., Shianna, K. V., Ge, D., Rotter, J. I., Torres, E., Taylor, K. D., Goldstein, D. B., & Reich, D. (2008). Long-range LD can confound genome scans in admixed populations. American journal of human genetics, 83(1), 132–139. https://doi.org/10.1016/j.ajhg.2008.06.005

Download BED-like files for high-LD or HLA regions

You can simply copy the list of high-LD or HLA regions in genome build version(.bed format) to a text file high-ld.txt.

High LD regions of hg19

high-ld-hg19.txt
1   48000000    52000000    highld
2   86000000    100500000   highld
2   134500000   138000000   highld
2   183000000   190000000   highld
3   47500000    50000000    highld
3   83500000    87000000    highld
3   89000000    97500000    highld
5   44500000    50500000    highld
5   98000000    100500000   highld
5   129000000   132000000   highld
5   135500000   138500000   highld
6   25000000    35000000    highld
6   57000000    64000000    highld
6   140000000   142500000   highld
7   55000000    66000000    highld
8   7000000 13000000    highld
8   43000000    50000000    highld
8   112000000   115000000   highld
10  37000000    43000000    highld
11  46000000    57000000    highld
11  87500000    90500000    highld
12  33000000    40000000    highld
12  109500000   112000000   highld
20  32000000    34500000    highld

Create a list of SNPs in high-LD or HLA regions

Next, use high-ld.txt to extract all SNPs that are located in the regions described in the file using the code as follows:

plink --file ${plinkFile} --make-set high-ld.txt --write-set --out hild

Create a list of SNPs in the regions specified in high-ld.txt

plinkFile="../04_Data_QC/sample_data.clean"

plink \
    --bfile ${plinkFile} \
    --make-set high-ld-hg19.txt \
    --write-set \
    --out hild

And all SNPs in the regions will be extracted to hild.set.

$head hild.set
highld
1:48000156:C:G
1:48002096:C:G
1:48003081:T:C
1:48004776:C:T
1:48006500:A:G
1:48006546:C:T
1:48008102:T:G
1:48009994:C:T
1:48009997:C:A

For downstream analysis, we can exclude these SNPs using --exclude hild.set.


PCA steps

Steps to perform a typical genomic PCA analysis

    1. LD-Pruning (https://www.cog-genomics.org/plink/2.0/ld#indep)
    1. Removing relatives from calculating PCs (usually 2-degree) (https://www.cog-genomics.org/plink/2.0/distance#king_cutoff)
    1. Running PCA using un-related samples and independent SNPs (https://www.cog-genomics.org/plink/2.0/strat#pca)
    1. Projecting to all samples (https://www.cog-genomics.org/plink/2.0/score#pca_project)

MAF filter for LD-pruning and PCA

For LD-pruning and PCA, we usually only use variants with MAF > 0.01 or MAF>0.05 ( --maf 0.01 or --maf 0.05) for robust estimation.


Sample codes

Sample codes for performing PCA

plinkFile="" #please set this to your own path
outPrefix="plink_results"
threadnum=2
hildset = hild.set 

# LD-pruning, excluding high-LD and HLA regions
plink2 \
        --bfile ${plinkFile} \
        --maf 0.01 \
        --threads ${threadnum} \
        --exclude ${hildset} \ 
        --indep-pairwise 500 50 0.2 \
        --out ${outPrefix}

# Remove related samples using king-cuttoff
plink2 \
        --bfile ${plinkFile} \
        --extract ${outPrefix}.prune.in \
        --king-cutoff 0.0884 \
        --threads ${threadnum} \
        --out ${outPrefix}

# PCA after pruning and removing related samples
plink2 \
        --bfile ${plinkFile} \
        --keep ${outPrefix}.king.cutoff.in.id \
        --extract ${outPrefix}.prune.in \
        --freq counts \
        --threads ${threadnum} \
        --pca approx allele-wts 10 \     
        --out ${outPrefix}

# Projection (related and unrelated samples)
plink2 \
        --bfile ${plinkFile} \
        --threads ${threadnum} \
        --read-freq ${outPrefix}.acount \
        --score ${outPrefix}.eigenvec.allele 2 6 header-read no-mean-imputation variance-standardize \
        --score-col-nums 7-16 \
        --out ${outPrefix}_projected

--pca and --pca approx

For step 3, please note that approx flag is only recommended for analysis of >5000 samples. (It was applied in the sample code anyway because in real analysis you usually have a much larger sample size, though the sample size of our data is just ~500)

After step 3, the allele-wts 10 modifier requests an additional one-line-per-allele .eigenvec.allele file with the first 10 PCs expressed as allele weights instead of sample weights.

We will get the plink_results.eigenvec.allele file, which will be used to project onto all samples along with an allele count plink_results.acount file.

In the projection, score ${outPrefix}.eigenvec.allele 2 5 sets the ID (2nd column) and A1 (5th column), score-col-nums 6-15 sets the first 10 PCs to be projected. Please check https://www.cog-genomics.org/plink/2.0/score#pca_project for more details on the projection.

Please check the content of your .eigenvec.allele file

Using recent plink2 versions, there are some minor changes in the output format. A1 is the 6th column, and the score-col-nums should be 7-16 Please adjust the column number in your script accordingly.

Allele weight and count files

plink_results.eigenvec.allele
#CHROM  ID      REF     ALT     PROVISIONAL_REF?        A1      PC1     PC2     PC3     PC4     PC5     PC6     PC7PC8      PC9     PC10
1       1:15774:G:A     G       A       Y       G       0.57834 -1.03002        0.744557        -0.161887       0.389223    -0.0514592      0.133195        -0.0336162      -0.846376       0.0542876
1       1:15774:G:A     G       A       Y       A       -0.57834        1.03002 -0.744557       0.161887        -0.389223   0.0514592       -0.133195       0.0336162       0.846376        -0.0542876
1       1:15777:A:G     A       G       Y       A       -0.585215       0.401872        -0.393071       -1.79583   0.89579  -0.700882       -0.103729       -0.694495       -0.007313       0.513223
1       1:15777:A:G     A       G       Y       G       0.585215        -0.401872       0.393071        1.79583 -0.89579    0.700882        0.103729        0.694495        0.007313        -0.513223
1       1:57292:C:T     C       T       Y       C       -0.123768       0.912046        -0.353606       -0.220148  -0.893017        -0.374505       -0.141002       -0.249335       0.625097        0.206104
1       1:57292:C:T     C       T       Y       T       0.123768        -0.912046       0.353606        0.220148   0.893017 0.374505        0.141002        0.249335        -0.625097       -0.206104
1       1:77874:G:A     G       A       Y       G       1.49202 -1.12567        1.19915 0.0755314       0.401134   -0.015842        0.0452086       0.273072        -0.00716098     0.237545
1       1:77874:G:A     G       A       Y       A       -1.49202        1.12567 -1.19915        -0.0755314      -0.401134   0.015842        -0.0452086      -0.273072       0.00716098      -0.237545
1       1:87360:C:T     C       T       Y       C       -0.191803       0.600666        -0.513208       -0.0765155 -0.656552        0.0930399       -0.0238774      -0.330449       -0.192037       -0.727729
plink_results.acount
#CHROM  ID      REF     ALT     PROVISIONAL_REF?        ALT_CTS OBS_CT
1       1:15774:G:A     G       A       Y       28      994
1       1:15777:A:G     A       G       Y       73      994
1       1:57292:C:T     C       T       Y       104     988
1       1:77874:G:A     G       A       Y       19      994
1       1:87360:C:T     C       T       Y       23      998
1       1:125271:C:T    C       T       Y       967     996
1       1:232449:G:A    G       A       Y       185     996
1       1:533113:A:G    A       G       Y       129     992
1       1:565697:A:G    A       G       Y       334     996

Eventually, we will get the PCA results for all samples.

PCA results for all samples

plink_results_projected.sscore
#FID    IID     ALLELE_CT       NAMED_ALLELE_DOSAGE_SUM PC1_AVG PC2_AVG PC3_AVG PC4_AVG PC5_AVG PC6_AVG PC7_AVG PC8_AVG     PC9_AVG PC10_AVG
HG00403 HG00403 390256  390256  0.00290265      -0.0248649      0.0100408       0.00957591      0.00694349      -0.00222251 0.0082228       -0.00114937     0.00335249      0.00437471
HG00404 HG00404 390696  390696  -0.000141221    -0.027965       0.025389        -0.00582538     -0.00274707     0.00658501  0.0113803       0.0077766       0.0159976       0.0178927
HG00406 HG00406 388524  388524  0.00707397      -0.0315445      -0.00437011     -0.0012621      -0.0114932      -0.00539483 -0.00620153     0.00452379      -0.000870627    -0.00227979
HG00407 HG00407 388808  388808  0.00683977      -0.025073       -0.00652723     0.00679729      -0.0116 -0.0102328 0.0139572        0.00618677      0.0138063       0.00825269
HG00409 HG00409 391646  391646  0.000398695     -0.0290334      -0.0189352      -0.00135977     0.0290436       0.00942829  -0.0171194      -0.0129637      0.0253596       0.022907
HG00410 HG00410 391600  391600  0.00277094      -0.0280021      -0.0209991      -0.00799085     0.0318038       -0.00284209 -0.031517       -0.0010026      0.0132541       0.0357565
HG00419 HG00419 387118  387118  0.00684154      -0.0326244      0.00237159      0.0167284       -0.0119737      -0.0079637  -0.0144339      0.00712756      0.0114292       0.00404426
HG00421 HG00421 387720  387720  0.00157095      -0.0338115      -0.00690541     0.0121058       0.00111378      0.00530794  -0.0017545      -0.00121793     0.00393407      0.00414204
HG00422 HG00422 387466  387466  0.00439167      -0.0332386      0.000741526     0.0124843       -0.00362248     -0.00343393 -0.00735112     0.00944759      -0.0107516      0.00376537

Plotting the PCs

You can now create scatterplots of the PCs using R or Python.

For plotting using Python: plot_PCA.ipynb

Scatter plot of PC1 and PC2 using 1KG EAS individuals

image

Note : We only used a small proportion of all available variants. This figure only very roughly shows the population structure in East Asia.

Requirements: - python>3 - numpy,pandas,seaborn,matplotlib

PCA-UMAP

(optional) We can also apply another non-linear dimension reduction algorithm called UMAP to the PCs to further identify the local structures. (PCA-UMAP)

For more details, please check: - https://umap-learn.readthedocs.io/en/latest/index.html

An example of PCA and PCA-UMAP for population genetics: - Sakaue, S., Hirata, J., Kanai, M., Suzuki, K., Akiyama, M., Lai Too, C., ... & Okada, Y. (2020). Dimensionality reduction reveals fine-scale structure in the Japanese population with consequences for polygenic risk prediction. Nature communications, 11(1), 1-11.

References

  • (PCA) Price, A., Patterson, N., Plenge, R. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38, 904–909 (2006). https://doi.org/10.1038/ng1847 https://www.nature.com/articles/ng1847
  • (why removing high-LD regions) Price, A. L., Weale, M. E., Patterson, N., Myers, S. R., Need, A. C., Shianna, K. V., Ge, D., Rotter, J. I., Torres, E., Taylor, K. D., Goldstein, D. B., & Reich, D. (2008). Long-range LD can confound genome scans in admixed populations. American journal of human genetics, 83(1), 132–139. https://doi.org/10.1016/j.ajhg.2008.06.005
  • (UMAP) McInnes, L., Healy, J., & Melville, J. (2018). Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426.
  • (UMAP in population genetics) Diaz-Papkovich, A., Anderson-Trocmé, L. & Gravel, S. A review of UMAP in population genetics. J Hum Genet 66, 85–91 (2021). https://doi.org/10.1038/s10038-020-00851-4 https://www.nature.com/articles/s10038-020-00851-4
  • (king-cutoff) Manichaikul, A., Mychaleckyj, J. C., Rich, S. S., Daly, K., Sale, M., & Chen, W. M. (2010). Robust relationship inference in genome-wide association studies. Bioinformatics, 26(22), 2867-2873.